51 research outputs found

    Effect of organic crop rotations on long-term development of the weed seedbank

    Get PDF
    Changes in the weed seedbank were monitored between 1991 and 1998 in two experiments that were established to compare organic crop rotations at two sites in NE Scotland. Two rotations, replicated twice at each site, were compared and all courses of both rotations were present every year. There were relatively minor changes in weed species diversity over time, but major changes in seedbank abundance. Weed seed numbers were relatively low in rotations with a high proportion of grass/clover ley. Differences in level of seedbank across the rotation were relatively predictable at Tulloch but much less so at Woodside where factors such as the effect of the grass/clover ley seemed to play a lesser role. Other factors, such as weather and its influence on the effectiveness of weed control operations, and higher populations of ground-living arthropods, may be affecting the Woodside seedbanks

    Ecosystem health towards sustainability

    Get PDF
    Ecosystems are becoming damaged or degraded as a result of stresses especially associated with human activities. A healthy ecosystem is essential to provide the services that humans and the natural environment require and has tremendous social and economic value. Exploration of the definition of ecosystem health includes what constitutes health and what it means to be healthy. To evaluate ecosystem health, it is necessary to quantify ecosystem conditions using a variety of indicators. In this paper, the main principles and criteria for indicator selection, classification of indicators for different kinds of ecosystems, the most appropriate indicators for measuring ecosystem sustainability, and various methods and models for the assessment of ecosystem health are presented. Drivers, sustainability, and resilience are considered to be critical factors for ecosystem health and its assessment. Effective integration of ecological understanding with socioeconomic, biophysical, biogeochemical, and public-policy dimensions is still the primary challenge in this field, and devising workable strategies to achieve and maintain ecosystem health is a key future challenge

    Perceptual and conceptual processing of visual objects across the adult lifespan

    Get PDF
    Abstract: Making sense of the external world is vital for multiple domains of cognition, and so it is crucial that object recognition is maintained across the lifespan. We investigated age differences in perceptual and conceptual processing of visual objects in a population-derived sample of 85 healthy adults (24–87 years old) by relating measures of object processing to cognition across the lifespan. Magnetoencephalography (MEG) was recorded during a picture naming task to provide a direct measure of neural activity, that is not confounded by age-related vascular changes. Multiple linear regression was used to estimate neural responsivity for each individual, namely the capacity to represent visual or semantic information relating to the pictures. We find that the capacity to represent semantic information is linked to higher naming accuracy, a measure of task-specific performance. In mature adults, the capacity to represent semantic information also correlated with higher levels of fluid intelligence, reflecting domain-general performance. In contrast, the latency of visual processing did not relate to measures of cognition. These results indicate that neural responsivity measures relate to naming accuracy and fluid intelligence. We propose that maintaining neural responsivity in older age confers benefits in task-related and domain-general cognitive processes, supporting the brain maintenance view of healthy cognitive ageing

    Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group.The control of voluntary movement changes markedly with age. A critical component of motor control is the integration of sensory information with predictions of the consequences of action, arising from internal models of movement. This leads to sensorimotor attenuation – a reduction in the perceived intensity of sensations from self-generated compared to external actions. Here we show that sensorimotor attenuation occurs in 98% of adults in a population-based cohort (n=325; 18-88 years; the Cambridge Centre for Ageing and Neuroscience). Importantly, attenuation increases with age, in proportion to reduced sensory sensitivity. This effect is associated with differences in the structure and functional connectivity of the pre-supplementary motor area (pre-SMA), assessed with magnetic resonance imaging. The results suggest that ageing alters the balance between the sensorium and predictive models, mediated by the pre-SMA and its connectivity in frontostriatal circuits. This shift may contribute to the motor and cognitive changes observed with age.Cam-CAN research was supported by the Biotechnology and Biological Sciences Research Council (BB/H008217/1). JBR and NW were supported by the James S. McDonnell Foundation 21st Century Science Initiative, Scholar Award in Understanding Human Cognition. JBR was also supported by Wellcome Trust [103838] and the Medical Research Council [MC-A060-5PQ30]. DMW was supported by the Wellcome Trust [097803], Human Frontier Science Program and the Royal Society Noreen Murray Professorship in Neurobiology. RNH was supported by the Medical Research Council [MC-A060-5PR10]. RAK was supported by a Sir Henry Wellcome Trust Postdoctoral Fellowship [107392]. LG was funded by a Rubicon grant from the Netherlands Organisation for Scientific Research (NWO)

    Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity

    Get PDF
    Healthy ageing has disparate effects on different cognitive domains. The neural basis of these differences, however, is largely unknown. We investigated this question by using Independent Components Analysis to obtain functional brain components from 98 healthy participants aged 23–87 years from the population-based Cam-CAN cohort. Participants performed two cognitive tasks that show age-related decrease (fluid intelligence and object naming) and a syntactic comprehension task that shows age-related preservation. We report that activation of task-positive neural components predicts inter-individual differences in performance in each task across the adult lifespan. Furthermore, only the two tasks that show performance declines with age show age-related decreases in task-positive activation of neural components and decreasing default mode (DM) suppression. Our results suggest that distributed, multi-component brain responsivity supports cognition across the adult lifespan, and the maintenance of this, along with maintained DM deactivation, characterizes successful ageing and may explain differential ageing trajectories across cognitive domains.The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) research was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1). K.A.T. is supported by Wellcome Trust (RG73750-RRZA/040) and British Academy Postdoctoral Fellowship (PF160048)

    Multiple determinants of lifespan memory differences

    Get PDF
    Memory problems are among the most common complaints as people grow older. Using structural equation modeling of commensurate scores of anterograde memory from a large (N = 315), population-derived sample (www.cam-can.org), we provide evidence for three memory factors that are supported by distinct brain regions and show differential sensitivity to age. Associative memory and item memory are dramatically affected by age, even after adjusting for education level and fluid intelligence, whereas visual priming is not. Associative memory and item memory are differentially affected by emotional valence, and the age-related decline in associative memory is faster for negative than for positive or neutral stimuli. Gray-matter volume in the hippocampus, parahippocampus and fusiform cortex, and a white-matter index for the fornix, uncinate fasciculus and inferior longitudinal fasciculus, show differential contributions to the three memory factors. Together, these data demonstrate the extent to which differential ageing of the brain leads to differential patterns of memory loss
    corecore